Formalization of SHACL

1 The shapes language

We assume three pairwise disjoint infinite sets I, L and B of IRIs, literals and blank nodes respectively. We use N to denote the set of all nodes $I \cup B \cup L$. We define the relation \sim to be an equivalence relation over the set of literals L such that for two literals $l, l^{\prime} \in L$ we have $l \sim l^{\prime}$ if and only if they both have a language tag and those language tags are the same.

An RDF triple (s, p, o) is an element of $(I \cup B) \times I \times(I \cup B \cup L)$. We refer to the elements of the triple as the subject s, predicate p and object o.

An RDF graph G is a finite set of RDF triples. The set of all subjects and objects occurring in the graph is referred to as the nodes of the graph.

A path expression E is given by the following grammar:

$$
E::=p\left|E^{-}\right| E_{1} \cdot E_{2}\left|E_{1} \cup E_{2}\right| E^{*} \mid E ?
$$

with $p \in I$ representing a property name.
We assume an infinite set Ω of tests on nodes in the graph, e.g., node type tests or pattern matching test. A shape ϕ is given by the following grammar:

$$
\begin{aligned}
\phi::= & \top|\perp| \operatorname{hasShape}(s)|\operatorname{test}(t)| \operatorname{hasValue}(c)|\neg \phi| \phi_{1} \wedge \phi_{2}\left|\phi_{1} \vee \phi_{2}\right| \\
& \geq{ }_{n} E \cdot \phi_{1}\left|\leq_{n} E . \phi_{1}\right| \forall E . \phi|\operatorname{eq}(E, p)| \operatorname{disj}(E, p)|\operatorname{closed}(P)| \\
& \operatorname{lessThan}(E, p)|\operatorname{less} \operatorname{ThanE}(E, p)| \text { uniqueLang }(E)
\end{aligned}
$$

with $s \in I \cup B, c, p \in I, t \in \Omega$ and $P \subseteq I$ representing a set of property names. We call the language described by this grammar \mathcal{L}.

A shape definition is a triple (s, ϕ, τ) with $s \in I \cup B$, and ϕ, τ shapes. The elements of the triple are referred to as the shape name, shape expression, and the target expression respectively.

A schema is a finite set of shape definitions. For the purpose of this work, we only consider schemas that are non-recursive. Note: add a definition of a non-recursive schema.

The evaluation of a shape, together with a shape schema, in an RDF graph results in a subset of N that satisfies the constraints expressed in the shape.

First, the evaluation of a path expression E in an RDF graph G is defined in Table 1

We define the conformance relation \vDash specifying when a node $a \in N$, given a graph G and a shape schema H, conforms to a shape ϕ :

E	$\llbracket E \rrbracket^{G}$
$\llbracket \llbracket \rrbracket^{G}$	$\{(s, o) \mid \exists p:(s, p, o) \in G\}$
$\llbracket E-\rrbracket^{G}$	$\left\{(o, s) \in N^{2} \mid(s, o) \in \llbracket E \rrbracket^{G}\right\}$
$\llbracket E ? \rrbracket^{G}$	$\{(a, a) \mid a \in N\} \cup \llbracket E \rrbracket^{G}$
$\llbracket E_{1} \cdot E_{2} \rrbracket^{G}$	$\left\{(s, o) \in N^{2} \mid(s, q) \in \llbracket E_{1} \rrbracket^{G} \wedge(q, o) \in \llbracket E_{2} \rrbracket^{G}\right\}$
$\llbracket E^{*} \rrbracket^{G}$	the reflexive, transitive closure of $\llbracket E \rrbracket^{G}$
$\llbracket E_{1} \cup E_{2} \rrbracket^{G}$	$\llbracket E_{1} \rrbracket^{G} \cup \llbracket E_{2} \rrbracket^{G}$

Table 1: Evaluation of a path expression

- $H, G, a \models \top$ holds for all $a \in N$;
- $H, G, a \models$ has Value(a) holds for all $a \in N$;
- $H, G, a \models \operatorname{test}(t)$ iff a satisfies test t;
- $H, G, a \models$ hasShape(s) iff $H, G, a \models \phi_{1}$ with $\left(s, \phi_{1}, \tau\right) \in H$;
- $H, G, a \models \neg \phi_{1}$ iff $H, G, a \not \models \phi_{1}$;
- $H, G, a \models \phi_{1} \wedge \phi_{2}$ iff $H, G, a \models \phi_{1}$ and $H, G, a \models \phi_{2}$;
- $H, G, a \models \phi_{1} \vee \phi_{2}$ iff $H, G, a \models \phi_{1}$ or $H, G, a \models \phi_{2}$;
- $H, G, a \models \geq_{n} E . \phi_{1}$ iff there exist at least n nodes b_{1}, \ldots, b_{n} such that $\left(a, b_{i}\right) \in \llbracket E \rrbracket^{G}$ and $H, G, b_{i} \models \phi_{1}$ with $1 \leq i \leq n$;
- $H, G, a \models \leq_{n} E . \phi_{1}$ iff there exist at most n nodes b_{1}, \ldots, b_{n} such that $\left(a, b_{i}\right) \in \llbracket E \rrbracket^{G}$ and $H, G, b_{i} \models \phi_{1}$ with $1 \leq i \leq n$;
- $H, G, a \models \forall E . \phi_{1}$ iff for all b when $(a, b) \in \llbracket E \rrbracket^{G}$, then $H, G, b \models \phi_{1}$;
- $H, G, a \models e q(E, p)$ iff $\llbracket p \rrbracket^{G}(a)$ and $\llbracket E \rrbracket^{G}(a)$ are equal;
- $H, G, a \models \operatorname{disj}(E, p)$ iff $\llbracket p \rrbracket^{G}(a)$ and $\llbracket E \rrbracket^{G}(a)$ are disjoint;
- $H, G, a \models \operatorname{closed}(P)$ iff for all triples $(a, p, b) \in G$ we have $p \in P$;
- $H, G, a \models$ lessThan (E, p) iff the maximal element from $\llbracket E \rrbracket^{G}(a)$ is strictly smaller than the minimal element from $\llbracket E \rrbracket^{G}(a)$;
- $H, G, a \models$ lessThan $E q(E, p)$ iff the maximal element from $\llbracket E \rrbracket^{G}(a)$ is smaller or equal to the minimal element from $\llbracket E \rrbracket^{G}(a)$;
- $H, G, a \models$ uniqueLang (E) iff for every two nodes b, c from $\llbracket E \rrbracket^{G}(a)$ we have $(b, c) \notin \sim$.
An RDF graph G validates against a schema H when for every shape definition $(s, \phi, \tau) \in H$ we have that for all $a \in N$ if $H, G, a \models \tau$ then $H, G, a \models \phi$.

2 From SHACL to the shapes language

In this section we define the function t which maps a SHACL shapes graph L to a shape schema H.

Assumptions about the shapes graph:

- All shapes of interest must be explicitly declared to be a sh:NodeShape or sh:PropertyShape
- The shapes graph is well-formed

Let the sets L_{n} and L_{p} be the sets of all NodeShape shape names, and PropertyShape shape names defined in the shapes graph L. Let d_{x} denote the set of RDF triples with x as the subject. We define t as follows:
$t(L)=\bigcup_{x \in L_{n}}\left\{\left(x, t_{\text {nodeshape }}\left(d_{x}\right), t_{\text {target }}\left(d_{x}\right)\right)\right\} \cup \bigcup_{x \in L_{p}}\left\{\left(x, t_{\text {propertyshape }}\left(d_{x}\right), t_{\text {target }}\left(d_{x}\right)\right)\right\}$

3 Defining $t_{\text {path }}(p)$

This function translates the Property Paths Keywords: sh:inversePath, sh:alternativePath, sh:zeroOrMorePath, sh:oneOrMorePath, sh:zeroOrOnePath, sh:alternativePath.

Definition:

$$
t_{\text {path }}(p)= \begin{cases}p & \text { if } p \text { is an IRI } \\ t_{\text {path }}(y)^{-} & \text {if } \exists y:(p, \text { sh:inversePath, } y) \in L \\ t_{\text {path }}(y)^{*} & \text { if } \exists y:(p, \text { sh:zeroOrMorePath, } y) \in L \\ t_{\text {path }}(y) \cdot t_{\text {path }}(y)^{*} & \text { if } \exists y:(p, \text { sh:oneOrMorePath, } y) \in L \\ t_{\text {path }}(y) ? & \text { if } \exists y:(p, \text { sh:zeroOrOnePath, } y) \in L \\ \bigcup_{a \in y} t_{\text {path }}(a) & \text { if } \exists y:(p, \text { sh:alternativePath, } y) \in L \\ & \text { and } y \text { is a SHACL list } \\ t_{\text {path }}\left(a_{1}\right) \cdots t_{\text {path }}\left(a_{n}\right) & \text { if } p \text { represents the SHACL list }\left[a_{1}, \ldots, a_{n}\right]\end{cases}
$$

4 Defining $t_{\text {nodeshape }}\left(d_{x}\right)$

Definition:
$t_{\text {nodeshape }}\left(d_{x}\right)=t_{\text {shape }}\left(d_{x}\right) \wedge t_{\text {logic }}\left(d_{x}\right) \wedge t_{\text {tests }}\left(d_{x}\right) \wedge t_{\text {value }}\left(d_{x}\right) \wedge t_{\text {in }}\left(d_{x}\right) \wedge t_{\text {closed }}\left(d_{x}\right)$

4.1 Defining $t_{\text {shape }}\left(d_{x}\right)$

This function translates the Shape-based Constraint Components. Keywords: sh:node, sh:property.

Definition:

$$
t_{\text {shape }}\left(d_{x}\right)=\bigwedge_{(x, \text { sh:node }, y) \in d_{x}} \operatorname{hasShape}(y) \wedge \bigwedge_{(x, \text { sh:property }, y) \in d_{x}} \operatorname{hasShape}(y)
$$

4.2 Defining $t_{\text {logic }}\left(d_{x}\right)$

This function translates the Logical Constraint Components. Keywords: sh: and, sh:or, sh:not, sh:xone.

Definition:

$$
\begin{aligned}
t_{\text {logic }}\left(d_{x}\right)= & \bigwedge_{(x, \text { sh:and }, y) \in d_{x}}\left(\bigwedge_{(x, \text { sh:xone }, y) \in d_{x}}\left(\bigvee_{a \in y}\left(a \wedge \bigwedge_{b \in y-\{a\}} \bigwedge_{(x, \text { sh:or,y }) \in d_{x}} \neg \operatorname{hasShape}(y)\right) \wedge \operatorname{haphape}(b)\right)\right) \wedge(\neg \operatorname{hasShape}(y))
\end{aligned}
$$

4.3 Defining $t_{\text {tests }}\left(d_{x}\right)$

This function translates the Value Type Constraint Components, Value Range Constraint Components, and String-based Constraint Components, Keywords: sh:class, sh:datatype, sh:nodeKind, sh:minExclusive, sh:maxExclusive, sh:minInclusive, sh:maxInclusive, sh:minLength, sh:maxLength, sh:pattern, sh:languageIn.

Definition:

$$
t_{\text {tests }}\left(d_{x}\right)=\bigwedge_{(x, \text { sh:class }, y) \in d_{x}}\left(\geq_{1} \text { rdf:type.hasShape }(y)\right) \wedge t_{\text {tests }}\left(d_{x}\right)
$$

We define $t_{\text {tests }}$ to be a conjunction of shapes of the form test (o) where o represents an element from the set Ω that corresponds to the constraints defined by the constraint component. This applies to the following keywords: : sh:class, sh:datatype, sh:nodeKind, sh:minExclusive, sh:maxExclusive, sh:minInclusive, sh:maxInclusive, sh:minLength, sh:maxLength, sh:pattern. The values of sh:languageIn are SHACL lists and are each translated to a disjunction of tests on language tags.

4.4 Defining other constraint components

These functions translate the Other Constraint Components. Keywords: sh: closed, sh:ignoredProperties, sh:hasValue, sh:in.

Definition:

$$
t_{\text {value }}=\bigwedge_{(x, \text { sh:hasValue }, y) \in d_{x}} \operatorname{has} \operatorname{Value}(y)
$$

$$
t_{i n}=\bigwedge_{(x, \text { sh:in }, y) \in d_{x}}\left(\bigvee_{a \in y} \text { hasValue }(a)\right)
$$

Let $P=\left\{p \mid \exists y:(x\right.$, sh:property,$y),(y$, sh:path, $p) \in d_{x} \wedge p$ is a property name $\} \cup$ $\bigcup_{\left\{y \mid(x, \text { sh: :ignoredProperties }, y) \in d_{x}\right\}} y$

$$
t_{\text {closed }}= \begin{cases}T & \text { if }(x, \text { sh:closed, } \text { true }) \notin d_{x} \\ \operatorname{closed}(P) & \text { otherwise }\end{cases}
$$

5 Defining $t_{\text {propertyshape }}\left(d_{x}\right)$

Definition: Let p be the property path associated with d_{x}. Let E be $t_{p a t h}(p)$.
$t_{\text {propertyshape }}\left(d_{x}\right)=t_{\text {card }}\left(E, d_{x}\right) \wedge t_{\text {pair }}\left(E, d_{x}\right) \wedge t_{\text {qual }}\left(E, d_{x}\right) \wedge t_{\text {all }}\left(E, d_{x}\right) \wedge t_{\text {lang }}\left(E, d_{x}\right)$

5.1 Defining $t_{\text {card }}\left(E, d_{x}\right)$

This function translates the Cardinality Constraint Components Keywords: sh:minCount, sh:maxCount.

Definition:

$$
t_{\text {card }}\left(E, d_{x}\right)=\bigwedge_{(x, \text { sh:minCount }, n) \in d_{x}} \geq_{n} E . \mathrm{T} \wedge \bigwedge_{(x, \text { sh:maxCount }, n) \in d_{x}} \leq_{n} \text { E.T }
$$

5.2 Defining $t_{\text {pair }}\left(E, d_{x}\right)$

This function translates the Property Pair Constraint Components. Keywords: sh:equals, sh:disjoint, sh:lessThan. sh:lessThanOrEquals.

Definition:

$$
\begin{aligned}
t_{p a i r}\left(E, d_{x}\right)= & \bigwedge_{(x, \text { sh:equals }, p) \in d_{x}} e q(E, p) \wedge \bigwedge_{(x, \text { sh:disjoint }, p) \in d_{x}} \operatorname{disj}(E, p) \wedge \\
& \bigwedge_{(x, \text { sh:lessThan }, p) \in d_{x}} \operatorname{lessThan}(E, p) \wedge \\
& \bigwedge_{(x, \text { sh:lessThanorEquals }, p) \in d_{x}} \operatorname{less} \operatorname{ThanE}(E, p)
\end{aligned}
$$

5.3 Defining $t_{\text {qual }}\left(E, d_{x}\right)$

This function translates the (Qualified) Shape-based Constraint Components
Keywords: sh:qualifiedValueShape, sh:qualifiedMinCount, sh:qualifiedMaxCount. sh:qualifiedValueShapesDisjoint.

Definition:
$t_{\text {qual }}\left(E, d_{x}\right)= \begin{cases}t_{\text {sibl }}\left(E, d_{x}\right) & \text { if }(x, \text { sh:qualifiedValueShapesDisjoint, true }) \in d_{x} \\ t_{\text {nosibl }}\left(E, d_{x}\right) & \text { otherwise }\end{cases}$
Let $p s=\{v \mid(v$, sh:property,$x) \in L\}$. Let $\operatorname{sibl}=\{w \mid \exists v \in p s \exists y(v$, sh:property, $y)$, $(y$, sh:qualifiedValueShape, $w) \in L\}$

$$
\begin{aligned}
t_{s i b l}\left(E, d_{x}\right)= & \bigwedge_{(x, \text { sh:qualifiedValueShape }, y) \in d_{x}(x, \text { sh:qualifiedMinCount }, z) \in d_{x}} \\
& \left(\geq_{z} E .\left(\operatorname{hasShape}(y) \wedge \bigwedge_{s \in \operatorname{sibl}} \neg \operatorname{hasShape}(s)\right) \wedge\right. \\
& (x, \text { sh:qualifiedValueShape }, y) \in d_{x}(x, \text { sh:qualifiedMaxCount }, z) \in d_{x} \\
& \left(\leq_{z} E .\left(\operatorname{hasShape}(y) \wedge \bigwedge_{s \in s i b l} \neg \operatorname{hasShape}(s)\right)\right.
\end{aligned}
$$

$t_{\text {nosibl }}\left(E, d_{x}\right)=\bigwedge_{(x, \text { sh:qualifiedValueShape }, y) \in d_{x}(x, \text { sh:qualifiedMinCount }, z) \in d_{x}}\left(\geq_{z} \bigwedge_{(x, \text { sh:qualifiedValueShape }, y) \in d_{x}(x, \text { sh:qualifiedMaxCount }, z) \in d_{x}}\left(\leq_{z} \operatorname{E.hasShape}(y)\right) \wedge\right.$

5.4 Defining $t_{\text {all }}\left(E, d_{x}\right)$

This function translates the NodeShape constraint components that are applied on PropertyShapes.

Definition:

$$
\begin{aligned}
t_{\text {all }}\left(E, d_{x}\right)= & \left.\left.\forall E .\left(t_{\text {shape }}\left(d_{x}\right) \wedge t_{\text {logic }}\left(d_{x}\right) \wedge t_{\text {tests }}\left(d_{x}\right)\right) \wedge t_{\text {in }}\left(d_{x}\right)\right) \wedge t_{\text {closed }}\left(d_{x}\right)\right) \\
& \wedge \exists E . t_{\text {value }}\left(d_{x}\right)
\end{aligned}
$$

5.5 Defining $t_{\text {lang }}\left(E, d_{x}\right)$

This function translates one specific constraint component: Unique Lang Constraint Component, Keywords: sh:uniqueLang.

Definition:

$$
t_{\text {lang }}\left(E, d_{x}\right)=\text { uniqueLang }(E)
$$

6 Defining $t_{\text {target }}\left(d_{x}\right)$

This function translates the Targets. Keywords: sh:targetNode, sh:targetClass, sh:targetSubjectsOf, sh:targetObjectsOf.

Definition:

$$
t_{\text {target }}\left(d_{x}\right)= \begin{cases}\text { hasValue }(y) & \text { if }(x, \text { sh:targetNode, } y) \in d_{x} \\ \geq_{1} \text { rdf:type.hasValue }(y) & \text { if }(x, \text { sh:targetClass, } y) \in d_{x} \\ \geq_{1} y . \top & \text { if }(x, \text { sh:targetSubjectsOf, } y) \in d_{x} \\ \geq_{1} y^{-} . \top & \text { if }(x, \text { sh:targetObjectsOf, } y) \in d_{x} \\ \perp & \text { otherwise }\end{cases}
$$

