Formalization of SHACL

1 The shapes language

We assume three pairwise disjoint infinite sets I, L and B of IRIs, literals and
blank nodes respectively. We use IV to denote the set of all nodes I U B U L.
We define the relation ~ to be an equivalence relation over the set of literals L
such that for two literals [,1’ € L we have [~ I’ if and only if they both have a
language tag and those language tags are the same.

An RDF triple (s,p,0) is an element of (I UB) x I x (I UBU L). We refer
to the elements of the triple as the subject s, predicate p and object o.

An RDF graph G is a finite set of RDF triples. The set of all subjects and
objects occurring in the graph is referred to as the nodes of the graph.

A path expression E is given by the following grammar:

E=p|E_‘E1E2|E1UE2|E*|E7

with p € I representing a property name.
We assume an infinite set) of tests on nodes in the graph, e.g., node type
tests or pattern matching test. A shape ¢ is given by the following grammar:

¢ =T | L | hasShape(s) | test(t) | hasValue(c) | ~¢ | o1 A P2 | p1V P2 |
>n E.¢1 [<n E.¢1 | VE.¢ | eq(E,p) | disj(E,p) | closed(P) |
lessThan(E,p) | lessThanEq(E, p) | uniqueLang(E)

with s € IUB, ¢,pe I, t € Q and P C I representing a set of property names.
We call the language described by this grammar L.

A shape definition is a triple (s, ¢, 7) with s € I U B, and ¢, 7 shapes. The
elements of the triple are referred to as the shape name, shape expression, and
the target expression respectively.

A schema is a finite set of shape definitions. For the purpose of this work,
we only consider schemas that are non-recursive. Note: add a definition of a
non-recursive schema.

The evaluation of a shape, together with a shape schema, in an RDF graph
results in a subset of N that satisfies the constraints expressed in the shape.

First, the evaluation of a path expression E in an RDF graph G is defined
in Table [

We define the conformance relation |= specifying when a node a € N, given
a graph G and a shape schema H, conforms to a shape ¢:

E [E]¢

[E£]° {(s,0) [Fp: (s,p,0) € G}

[E-]¢ {(0,5) € N? | (s,0) € [E]}

(B¢ {(wa)|ae N}U[E]®

[E1- Eo] {(s.0) € N? | (s,q) € [E1] A (g, 0) € [E2]“}
[E*]¢ the reflexive, transitive closure of [E]¢

[EyUE]C [Ei]€ U[E]¢

Table 1: Evaluation of a path expression

e H G,a =T holds for all a € N;

o H,G,a = hasValue(a) holds for all a € N;

e H G,a = test(t) iff a satisfies test ¢;

e H G,a = hasShape(s) it H,G,a |= ¢1 with (s, ¢1,7) € H;
e HG,aE ¢ iff HG, alE ér;

e HGaE¢p1 N2 iff HG,al ¢ and H,G,a = ¢o;

e HG aE¢1 Vo it HG,al ¢1 or HG,alE ¢

e H G,a = >, E.¢p iff there exist at least n nodes by,...,b, such that
(a,b;) € [E]€ and H, G, b; = ¢1 with 1 <i < n;

e HG,aE <, E.¢ iff there exist at most n nodes by, ...,b, such that
(a,b;) € [E]¢ and H,G,b; = ¢1 with 1 <i < n;

e H,G,a = VE.¢; iff for all b when (a,b) € [E], then H,G,b = ¢1;
e H,G,al= eq(E,p) iff [p]®(a) and [E]%(a) are equal;

e H,G,al= disj(E,p) iff [p]%(a) and [E]%(a) are disjoint;

e H G,a = closed(P) iff for all triples (a,p,b) € G we have p € P;

e H,G,a = lessThan(E,p) iff the maximal element from [E]%(a) is strictly
smaller than the minimal element from [E]%(a);

e H G,a = lessThanEq(E,p) iff the maximal element from [E]%(a) is
smaller or equal to the minimal element from [E]%(a);

e H,G,a = uniqueLang(E) iff for every two nodes b,c from [E]%(a) we
have (b,c) & ~.

An RDF graph G validates against a schema H when for every shape defi-
nition (s,®,7) € H we have that for all a € N if H,G,a |= 7 then H,G,a = ¢.

2 From SHACL to the shapes language

In this section we define the function ¢ which maps a SHACL shapes graph L
to a shape schema H.
Assumptions about the shapes graph:

e All shapes of interest must be explicitly declared to be a sh:NodeShape
or sh:PropertyShape

e The shapes graph is well-formed

Let the sets L, and L, be the sets of all NodeShape shape names, and
PropertyShape shape names defined in the shapes graph L. Let d, denote the
set of RDF triples with x as the subject. We define ¢ as follows:

t(L) = U {(I’, tnodeshape (dx)7 ttarget (dm))}u U {(I’, tpropertyshape (dr); ttarget (dr))}

x€ L, €Ly

3 Defining ¢,.(p)

This function translates the Property Paths. Keywords: sh:inversePath,
sh:alternativePath, sh:zeroOrMorePath, sh:oneOrMorePath, sh:zeroOrOnePath,
sh:alternativePath.

Definition:
D if p is an IRI
tpath ()~ ifJy : (p, sh:inversePath,y) € L
tpath (Y)* ifJy : (p, sh:zeroOrMorePath,y) € L
Eon(p) = tpath (V) * tpath (Y)* if y : (p, sh:oneOrMorePath,y) € L
path P tpath (Y)? if 3y : (p, sh:zeroOrOnePath,y) € L
Uaey tpatn(a) ifdy : (p, sh:alternativePath,y) € L
and y is a SHACL list
tpatn (@) - - -+ tpath(arn) if p represents the SHACL list [aq, ..., ay]

4 Deﬁning tnodeshape (dﬂ?)

Definition:

tnodeshape (dz) = tshape (dz) /\tlogic (dr) /\ttests (dm) /\tvalue (dz) /\tin (dz) /\tclosed (dz)

4.1 Defining ¢4 (d,)

This function translates the Shape-based Constraint Components. Keywords:
sh:node, sh:property.

https://www.w3.org/TR/shacl/#dfn-well-formed
https://www.w3.org/TR/shacl/#property-paths
https://www.w3.org/TR/shacl/#core-components-shape

Definition:

tshape (dz) = /\ hasShape(y) A /\ hasShape(y)

(x,shinode,y)Edy (x,sh:property,y)Ed,

4.2 Defining t;44(d;)

This function translates the|Logical Constraint Components. Keywords: sh:and,
sh:or, sh:not, sh:xone.

Definition:
tiogic(dz) = /\ (/\ hasShape(y)) A /\ (\/ hasShape(y)) A
(x,sh:and,y)Ed, (x,sh:or,y)Edy
/\ (\/ (a N /\ —hasShape(b))) A
(x,sh:xone,y)Ed, a€y bey—{a}

/\ (—hasShape(y))

(x,sh:not,y)E€d,

4.3 Defining t;.q,(d,)

This function translates the Value Type Constraint Components, Value Range
Constraint Components, and |String-based Constraint Components. Keywords:
sh:class, sh:datatype, sh:nodeKind, sh:minExclusive, sh:maxExclusive,
sh:minInclusive, sh:maxInclusive, sh:minLength, sh:maxLength, sh:pattern,
sh:languageln.

Definition:

trests(dz) = /\ (>1 rdf:type.hasShape(y)) A tiests (dz)

(x,sh:class,y)Ed,

We define tsests0 to be a conjunction of shapes of the form test(o) where o
represents an element from the set 2 that corresponds to the constraints de-
fined by the constraint component. This applies to the following keywords: :
sh:class, sh:datatype, sh:nodeKind, sh:minExclusive, sh:maxExclusive,
sh:minInclusive, sh:maxInclusive, sh:minLength, sh:maxLength, sh:pattern.
The values of sh:languageIn are SHACL lists and are each translated to a dis-
junction of tests on language tags.

4.4 Defining other constraint components

These functions translate the Other Constraint Components. Keywords: sh:closed,
sh:ignoredProperties, sh:hasValue, sh:in.
Definition:
toalue = /\ hasValue(y)

(z,sh:hasValue,y)Ed,

https://www.w3.org/TR/shacl/#core-components-logical
https://www.w3.org/TR/shacl/#core-components-value-type
https://www.w3.org/TR/shacl/#core-components-range
https://www.w3.org/TR/shacl/#core-components-range
https://www.w3.org/TR/shacl/#core-components-string
https://www.w3.org/TR/shacl/#core-components-others

tin = /\ (\/ hasValue(a))

(z,sh:in,y)€d, a€y
Let P = {p | Jy : (x, sh:property,y), (y, sh:path, p) € d.Ap is a property name}U

U{y|(x,sh:ignoredProperties,y) €dy} Y

;)T if (z, sh:closed, true) & d,
closed = closed(P) otherwise

5 Defining ¢popertyshape (dz)

Definition: Let p be the property path associated with d;. Let E be tpqu, (p)-

tpropertyshape (dz> = tcard <E7 d:v)/\tpair(E7 dw)/\tqual(E; d:p)/\tall <E7 dw)/\tlang (E; d:r)

5.1 Defining t.,q(F,d,)

This function translates the Cardinality Constraint Components. Keywords:
sh:minCount, sh:maxCount.
Definition:

tC(LTd(Ead.’t) = /\ >, E.TA /\ <, ET
(x,sh:minCount,n)Ed, (x,sh:maxCount,n)Ed,
5.2 Defining ¢,,,(E,d;)

This function translates the Property Pair Constraint Components. Keywords:
sh:equals, sh:disjoint, sh:lessThan. sh:lessThanOrEquals.

Definition:
tpair (B, dz) = A eq(E,p) A A disj(E, p) A
(x,sh:equals,p)Edy, (x,sh:disjoint,p)Ed,
/\ lessThan(E, p) A
(z,sh:lessThan,p)€d,,
/\ lessThanEq(E, p)

(x,sh:lessThanOrEquals,p)€d,

5.3 Defining ¢,,,(E,d,)

This function translates the (Qualified) Shape-based Constraint Components.
Keywords: sh:qualifiedValueShape, sh:qualifiedMinCount, sh:qualifiedMaxCount.
sh:qualifiedValueShapesDisjoint.

https://www.w3.org/TR/shacl/#core-components-count
https://www.w3.org/TR/shacl/#core-components-property-pairs
https://www.w3.org/TR/shacl/#QualifiedValueShapeConstraintComponent

Definition:

tsin(E,dy) if (x,sh:qualifiedValueShapesDisjoint, true) € d,
tnosibl(E,dy) otherwise

tqual (E7 dm) = {

Let ps = {v | (v, sh:property,z) € L}. Let sibl = {w | v € ps Jy(v, sh:property,y),
(y, sh:qualifiedValueShape,w) € L}

tsibl (E> da:) = /\ /\

(x,sh:qualifiedValueShape,y)Ed, (x,sh:qualifiedMinCount,z)€d,

(>, E.(hasShape(y) N /\ —hasShape(s))A

s€sibl

A A

(x,sh:qualifiedValueShape,y)€d, (z,sh:qualifiedMaxCount,z)€Ed,

(<, E.(hasShape(y) A /\ —hasShape(s))
sesibl

tnosivi (B, dz) = /\ /\ (>, E.hasShape(y))A

(x,sh:qualifiedValueShape,y)€d, (z,sh:qualifiedMinCount,z)€Ed,

/\ /\ (<, E.hasShape(y))

(z,sh:qualifiedValueShape,y)€d, (z,sh:qualifiedMaxCount,z)€Ed,

5.4 Defining ¢,,(F,d,)

This function translates the NodeShape constraint components that are applied
on PropertyShapes.
Definition:

tall(Ea dm) = vE’-(tshape (dm) A tlogic (dr) A ttests (dm)) A tin (dm)) A tclosed (dz))
A JE tyaine(dy)

5.5 Defining t;,,,(E,d,)

This function translates one specific constraint component: Unique Lang Con-
straint Component. Keywords: sh:uniquelLang.
Definition:
tiang (E, dy) = uniqueLang(E)

6 Deﬁning ttarget (dx)

This function translates the Targets. Keywords: sh:targetNode, sh:targetClass,
sh:targetSubjects0f, sh:targetObjectsOf.

https://www.w3.org/TR/shacl/#UniqueLangConstraintComponent
https://www.w3.org/TR/shacl/#UniqueLangConstraintComponent
https://www.w3.org/TR/shacl/#targets

Definition:

hasValue(y) if (z, sh:targetNode, y) € d,

>1 rdf:type.hasValue(y) if (x,sh:targetClass,y) € d,
tiarget(dz) = >1 4. T if (z, sh:targetSubjects0f, y) € d,
>y~ T if (z, sh:itargetObjects0f, y) € d,
1 otherwise

	The shapes language
	From SHACL to the shapes language
	Defining tpath(p)
	Defining tnodeshape(dx)
	Defining tshape(dx)
	Defining tlogic(dx)
	Defining ttests(dx)
	Defining other constraint components

	Defining tpropertyshape(dx)
	Defining tcard(E, dx)
	Defining tpair(E, dx)
	Defining tqual(E, dx)
	Defining tall(E, dx)
	Defining tlang(E, dx)

	Defining ttarget(dx)

