Shapes Constraint Language:
Formalization, Expressiveness, and Provenance

Maxime Jakubowski

Doctoral Defense
May 31st 2024

Knowledge Graphs

* Organising information in graphs
* Resource Description Framework (RDF) — RDF graphs

OWL Knowledge

The Hobbit

“every author is a human”

tolkien

* What to do with this information?
* Querying (SPARQL): “whoisthe author of The Hobbit?”
* Reasoning (OWL): “is tolkien human?”

Shapes Constraint Language: SHACL

* RDF graphs can be very large

* We want to ensure good quality of these graphs
* Knowing what to expect
* Detecting errors in our data
* Ensuring consistency

* For example: “every book must have an author”

type
The Hobbit The Two
Towers

author

tolkien

Shapes Constraint Language: SHACL

* Shapes are constraints on a graph, and consists of two parts:
* Constraint on a node: the shape expression
* Specification which nodes must satisfy the constraint: target declaration

* In our example:
* “has an author” is a shape expression
* “every book” is a target declaration

:BookShape a sh:PropertyShape ;
sh:path :author ;

sh:minCount 1 . The Hobbit The Two

Towers

:BookShape sh:targetClass :Book . tolkien

Formalization
“What is a good abstraction for SHACL?”

Bart Bogaerts, Maxime Jakubowski, Jan Van den Bussche:
SHACL: A Description Logic in Disguise. LPNMR 2022: 75-88

Bart Bogaerts, Maxime Jakubowski:
Fixpoint Semantics for Recursive SHACL. ICLP Tech. Comm.
2021:41-47

Formal semantics for SHACL

* SHACL is defined by the World Wide Web Concortium in a
document called the “recommendation”

* This document is mainly written for software engineers that implement
SHACL software

* For academic understanding of SHACL, more abstraction is needed

e Academics soon formalized SHACL:

* Julien Corman, Juan L. Reutter, Ognjen Savkovic:
Semantics and Validation of Recursive SHACL. ISWC (1) 2018: 318-336

 Medina Andresel, Julien Corman, Magdalena Ortiz, Juan L. Reutter,
Ognjen Savkovic, Mantas Simkus:
Stable Model Semantics for Recursive SHACL. WWW 2020: 1570-1580

SHACL - The Logical Perspective

Let N, P and S be disjoint universes of node names, property names
and shape names.

Shape Expressions

¢ := T | hasValue(c) | hasShape(s) | eq(E,p) | disj(E,p)
| closed(Q) | =, E.¢p 1 dAP| 0

E=idlp|lp " |[EVE|E/E|E"

withceN,peP,seSandQ S P

E are regular path queries with inverse

Semantics of Shape Expressions

* Given through an interpretation I:

* with a domain: A

e interprets node names ¢ € N: [c]!
e Interprets shape namess € S: [s]!
* Interprets property names p € P: [p]!

* We define the evaluation of:
« apath expression E, denoted [E], as a subset of Al xA!
* ashape expression ¢, denoted [[¢]!, as a subset of Al

Semantics of Shape Expressions

* We define the evaluation of:
« apath expression E, denoted [E], as a subset of Al xA!
* ashape expression ¢, denoted [[¢]!, as a subset of Al

9 o

T
hasValue(c)
hasShape(s)

eq(E, p)
disj(E,p)
closed(Q)
>0 E.pq
b1 NP2

AI

[c]
[s]"

{a €A
{a € Al

[E] (a) = [p]' (@)}
[E] (a) n [p]'(a) = 0}

{a € Al | [p]*(a) = @ foreveryp € =\ Q}
{a € A" | #([E]"(a) N [¢1]") = n}
[p1]" N [p,]"

What’s in an RDF Graph?

* Real SHACL is not about interpretations, but about graphs
* An RDF graph is a finite set of facts p(a, b) representing the edges

* This gives us a specific type of interpretation where:

* The domain is the universe of all nodes: Al =N
 Constants, i.e., nodes, are interpreted as themselves : [[c]]’ = {c}
* The interpretation of properties is given by the graph: Ip]! = [p]°©

10

Example shapes

* “Through a path of friend edges, the node can reach

node d” O
» dfriend”. hasValue(d)
* b, ¢, and d satisfy this shape in G

* “Nodes where friendship is mutual” ﬂ@\

* eq(friend, friend™)

* ¢ and d satisfy this shapein G e Q

* “Nodes who have at least one colleague who is also
friend” — Friend
airien - Colleague
* —disj(friend, colleague)
* b and c satisfy this shapein G

11

Shape schemas

* The main task is to check whether a graph conforms to some
constraints, not single nodes.

* Shape definition: S ¢ e
* Target statement: b S O r
« Example schema (Def, T): /
* Def: FriendOfD « 3Jfriend”. hasValue(d) GHO
e T: dfriend. T € hasShape(FriendOfD) — Friend

Colleague

12

Correspondence with the Recommendation

* How does this logic exactly compare to SHACL?

* We want to study SHACL, and this logic:

1L I Every formal SHACL schema can be written as a real SHACL
shapes graph and vice versa

13

Recursion in SHACL

* Recursion: defining a shape in terms of itself
* Some shapes are easily expressed with recursion

“You are a GoodFriendOfD if there is a friend-path of Good nodes to d”

GoodFriendOfD « hasValue(d)
GoodFriendOfD « 3Ffriend. hasShape(GoodFriendOfD) A Atype. hasValue(Good)

:GoodFriendOfD a sh:NodeShape ;
sh:class :Good ;
sh:or (
[sh:hasvalue :d]
[sh:path :friend ;
sh:qualifiedValueShape :GoodFriendOfD ;
sh:qualifiedMinCount 1])

14

Applying Approximation Fixpoint Theory

* Algebraic Framework to study fixpoints, defines:

 Supported semantics
* Stable semantics

 Well-founded semantics

I, < I, iffforevery s € S: [s]'r © [s]’

* We only need to:

* Agree on an order of interpretations: the standard truth order
* Agree on how to evaluate shapes in the three-valued logical setting: Kleene

_p | a _pra | pva

True unknown | unknown true
e Well defined semantics for recursive SHACL False unknown | false unknown

* We get:

* Theorethical body of results coming from AFT, now applicable to SHACL

15

Existing Semantics

[Corman 2018] defined supported model semantics (CRS-supported)
* Already defined the three-valued semantic operator @, ¢

CRS-supported models coincide with the AFT-supported models

[Andresel 2020] defined stable model semantics (ACORSS-stable)
* Defined in terms of ‘level-mappings’

1L I Every AFT-stable model is a ACORSS-stable model. If Defis in
shape normal form, the converse also holds.

16

EXxpressiveness
“What can we express with SHACL?”

Bart Bogaerts, Maxime Jakubowski, Jan Van den Bussche:

Expressiveness of SHACL Features and Extensions for Full Equality
and Disjointness Tests. Log. Methods Comput. Sci. 20(1) (2024)

Relative Expressiveness

e What features of SHACL are essential ?

* We already have the classical logical equivalences for free:
* Vfriend. hasShape(GoodPerson) = —3friend. ~hasShape(GoodPerson)

e Three uncommon features of SHACL.:

e Equality: eq(E,p)
* Disjointness: disj(E,p)
* Closed: closed(Q)

 Can we express these features with other constructs?

18

SHACL Features

Simple Shape Expressions

¢ =T | hasValue(c) | =, E.¢0 | dAP | g

E:=id|plE"|EUE|E/E|E*

withc e N,peP,s€eSandQ € P

* We call this the language L, with none of the interesting features
 F € {eq,disj,closed}

* L(eq,disj,closed) is the logical core of SHACL

* With L(F) we can write generalized shape schemas

» Set of inclusion statements: ¢; € ¢, with ¢, and ¢ in L(F)

19

Main Result: all are primitive

101 g 8 Foreachfeature X € { eq, disj, closed} we define a class of graphs
(Qx such that:

* (Qy isdefinable by a simple inclusion using only feature X

* (Qy isnotdefinable without X

20

Proving Primitivity of Equality

T TEINAA O,y is the class of symmetric graphs:
Ir. T S eq(r,77)

For any shape ¢ not using equality: [¢]¢ = [¢]¢

G G’

A complete directed graph A complete directed graph
with one edge removed

21

Proving Primitivity of Disjointness

OISTITNGIEEH Quis; is the class of graphs where all nodes have at least one
symmetric edge:

Ar. T € =disj(r,r7)

For any shape ¢ not using equality: [¢]¢ = [¢]¢

N O
I

An alternating cycle of cliques A cycle of cliques

G G’

22

Extending the Primitivity Result

* Equality and disjointness seem artificially restricted!
* Full-Equality: eq(Ey, E5)
* Full-Disjointness: disj(Ey, E5)

11 (s 1B Forboth features X € { full—eq, full-disj } we define a class of
graphs Qy such that:

* (Qy isdefinable by a simple inclusion using only feature X

* (y isnotdefinable without X

23

Provenance:
“What subset of the graph is really relevant?”

Thomas Delva, Anastasia Dimou, Maxime Jakubowski, Jan Van den Bussche:
Data Provenance for SHACL. EDBT 2023: 285-297

Provenance & Neighborhoods

Goal:
* Provide provenance of a shape schema as a subgraph

* This subgraph only contains triples that are “relevant”

We define the neighborhood: B(G,v, o)
* (agraph
* vanode
* ¢ a shape
What part of ¢ is relevant to decide that v satisfies ¢ in G?

25

Sufficiency and design principles

SILTEEUTSA |f 5 node v satisfies a shape ¢ in a graph G, then:
VA) also satisfies ¢ in G’ for any subgraph G’ with B(G, v,) € G’ € G.

“Strong” sufficiency: it holds for all G' where B(G,v,¢$) € G’ S G.
* Technical necessity
* Allows for leniency in implementations of neighborhoods

When defining neighborhoods we want to be both deterministic and minimal

26

Neighborhood definition

Shapes in negation normal form (and no path expressions):
¢ =T|L| hasValue(c) | =hasValue(c) | eq(p,q) | ~eq(p, q)

| disj(p,q) | =disj(p,q) | closed(Q) | =closed(Q)
|l pADPlOVDI| 2pp. P | <pp.P

Neighborhood of a node v according to a shape ¢ in graph G: B(G, v, ¢)

* When the node v does not satisfy ¢ in ¢, the neighborhood is empty

 Shapes that do not use any properties, also have an empty neighborhood

27

Nonequality: —eq(p, q)

G B(G,v,¢)

“symetric difference”

Options: Reasons:

* Only edgestoaand/orc * Determinism
* Alledges * Somehow minimal

Quantifiers: =1 p. Y

C —|l,b
Options:
 Onlyedgestoaand/orb
* Alledges

B(G,v,¢)

,Q

Reasons:
Determinism
Somehow minimal

29

Quantifiers: <4 p. Y

G
Y
% » b)Y
\ : _ﬂp
Options:
* No edges
* Edgetoa
* Alledges

B(G,v,¢)

d

,Q

Reasons:

Determinism
Somehow minimal

Adding edges to the neighborhood may

not break sufficiency

30

Example

type author
Professor

Student

¢ = =, author. T A <4 author. == type. hasValue(Student)

“The node has an author and at most one author is not a student.”

B(G,p1, ¢)

31

Example

type author
Professor

Student

¢ = =4 author. T A <4 author. <, type. hasValue(Student)

“The node has an author and at most one author is not a student.”

B(G,p1, ¢)

32

Example

type author

Professor

¢ = =, author. T N <4 author. < type. hasValue(Student)

“The node has an author and at most one author is not a student.”

B(G,pl, ¢)

33

Example

type author

Professor

B(G,Anne, =<, type. hasValue(Student))

B(G,Bob, ~<, type. hasValue(Student))

¢ = =, author. T A < author.|<, type. hasValue(Student)

“The node has an author and at most one author is not a student.”

B(G,pl, ¢)

34

Example

type author

Professor

B(G, Anne, dtype. hasValue(Student))

B(G,Bob, 3type. hasValue(Student))

¢ = =, author. T A < author.|<, type. hasValue(Student)

“The node has an author and at most one author is not a student.”

B(G,pl, ¢)

35

Example

type author

Professor

Student

B{G-Anne 3type-hasValue(Student))

B(G,Bob, 3type. hasValue(Student))

¢ = =, author. T A < author. |<, type. hasValue(Student)|

“The node has an author and at most one author is not a student.”

B(G,pl, ¢)

36

Applications and
Implementations

https://github.com/Maximelakubowski/sls_project

https://github.com/Shape-Fragments

https://github.com/MaximeJakubowski/sls_project
https://github.com/Shape-Fragments

Shape Fragments
... as an application of neighborhoods.

We define Frag(G, S) as the union of all neighborhoods of nodes satisfying the
shapes from S inG.

Let H be a shape schema, we define:
Frag(G, H) := Frag(G,S)

where S = {¢p AT | T is the target of ¢ in H}

SCOIMTUENR |f 5 graph G satisfies a schema H, then Frag(G, H) also
Property conformsto H.

38

Tools

* PySHACL implementation

* Translation to SPARQL

 Conformance queries

* Neighborhood queries

39

Overhead percentage

30

25

N
o

PYySHACL Overhead: checking vs retrieval

56 shapes
1.5M > 4.5M triples

Average: 10%
Average > 1s: 15,6%

40

w B S U
o o o Ul o

Time in seconds
N NI w
o ul

[EEY
92

Retrieving neighborhoods in SPARQL

* 13 shapes
e 1.5M->4.5Mtriples

1.5M 2.5M 3.5M 4.5M

Conclusions

Recommendations and future work

SHACL, SPARQL, and OWL

* Different “views” on what an RDF (data) graph is:

* OWL seesitas an ABox: a logical theory
« SPARQL and SHACL see it as a specific interpretation

* SHACL can be formalized in a purely logical fashion, like OWL

* Both can be viewed as a Description Logic, but with different tasks
* OWL is mostly concerned with entailment and consistency
« SHACL is mostly concerned with model checking

43

Suggestions for the Recommendation (1)

* The W3C leaves recursive shapes undefined

* Semantics from the literature (mostly) agree on:
* Minimal model semantics for purely positive recursion

* Minimal model semantics for shape definitions using negation in a
Stratified manner

(TP Adopt “stratified negation” in the recommendation

44

Suggestions for the Recommendation (2)

* There is interest in extending SHACL with new constraint
components (see DASH)

* The suggested extensions seem to add some expressive power

PG Allow for full property paths in the Property Pair Constraint
Components, e.g., full equality and disjointness

45

Applications for Provenance

* The neighborhood can be used to describe a node in a graph
* You get the relevant information

* Suffiency guarantees that the description fits the shape, even when
adding information

* No need to write additional queries in SPARQL

* Neighborhoods can give an indication of the coverage of the
schema

46

Specific Open Questions
* Expressiveness under the different recursive semantics: are the
features still primitive?

* Expressiveness of “zero-or-one” paths as a feature: E?7= E U id

e Can we express the “diamond shape”? %C{:ﬁ)@}

* Provenance: formalizing or correcting our notion of minimality and
determinism

47

Research Directions

* The relation between SHACL, ShEx, and PG-Schema

* Extending SHACL to capture the “full” power of RDF as a triple
relation
* Exploring alternative SHACL semantics by translation to other

languages:
* Retrieval with SQL
* Reasoning with IDP

* Usage of SHACL in the wild

48

Thank you

