
Shapes Constraint Language:
Formalization, Expressiveness, and Provenance

Doctoral Defense
May 31st 2024

Maxime Jakubowski

Knowledge Graphs

• Organising information in graphs
• Resource Description Framework (RDF) – RDF graphs

• What to do with this information?
• Querying (SPARQL): “who is the author of The Hobbit?”
• Reasoning (OWL): “is tolkien human?”

OWL Knowledge

“every author is a human”
The Hobbit

book

tolkien

type

author

2

Shapes Constraint Language: SHACL
• RDF graphs can be very large
• We want to ensure good quality of these graphs
• Knowing what to expect
• Detecting errors in our data
• Ensuring consistency

• For example: “every book must have an author”

The Two
Towers

type

3

The Hobbit

book

tolkien

type

author

• Shapes are constraints on a graph, and consists of two parts:
• Constraint on a node: the shape expression
• Specification which nodes must satisfy the constraint: target declaration

• In our example:
• “has an author” is a shape expression
• “every book” is a target declaration

Shapes Constraint Language: SHACL

:BookShape a sh:PropertyShape ;
 sh:path :author ;
 sh:minCount 1 .

:BookShape sh:targetClass :Book .

The Two
Towers

type

The Hobbit

book

tolkien

type

author

4

Formalization
“What is a good abstraction for SHACL?”

Bart Bogaerts, Maxime Jakubowski, Jan Van den Bussche:
SHACL: A Description Logic in Disguise. LPNMR 2022: 75-88

Bart Bogaerts, Maxime Jakubowski:
Fixpoint Semantics for Recursive SHACL. ICLP Tech. Comm.
2021: 41-47

Formal semantics for SHACL

• SHACL is defined by the World Wide Web Concortium in a
document called the “recommendation”
• This document is mainly written for software engineers that implement

SHACL software
• For academic understanding of SHACL, more abstraction is needed

• Academics soon formalized SHACL:
• Julien Corman, Juan L. Reutter, Ognjen Savkovic:

Semantics and Validation of Recursive SHACL. ISWC (1) 2018: 318-336
• Medina Andresel, Julien Corman, Magdalena Ortiz, Juan L. Reutter,

Ognjen Savkovic, Mantas Simkus:
Stable Model Semantics for Recursive SHACL. WWW 2020: 1570-1580

6

SHACL – The Logical Perspective

𝐸 are regular path queries with inverse

𝜙 ≔ ⊤ ∣ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 𝑐 ∣ ℎ𝑎𝑠𝑆ℎ𝑎𝑝𝑒 𝑠 ∣ 𝑒𝑞 𝐸, 𝑝 ∣ 𝑑𝑖𝑠𝑗 𝐸, 𝑝

∣ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑄 ∣ ≥!𝐸. 𝜙 ∣ 𝜙 ∧ 𝜙 ∣ ¬𝜙

𝐸 ≔ 𝑖𝑑 ∣ 𝑝 ∣ 𝑝" ∣ 𝐸 ∪ 𝐸 ∣ 𝐸/𝐸 ∣ 𝐸∗

with	𝑐 ∈ 𝑁,	𝑝 ∈ 𝑃,	𝑠 ∈ 𝑆 and	𝑄 ⊆ 𝑃

Shape Expressions

Let 𝑁, 𝑃 and 𝑆 be disjoint universes of node names, property names
and shape names.

7

Semantics of Shape Expressions
• Given through an interpretation 𝐼:
• with a domain: Δ$
• interprets node names 𝑐 ∈ 𝑁: 𝑐 $

• Interprets shape names 𝑠 ∈ 𝑆: 𝑠 $

• Interprets property names 𝑝 ∈ 𝑃: 𝑝 $

8

• We define the evaluation of:
• a path expression 𝐸, denoted 𝐸 $, as a subset of Δ$×Δ$
• a shape expression 𝜙, denoted 𝜙 $, as a subset of Δ$

Semantics of Shape Expressions

9

• We define the evaluation of:
• a path expression 𝐸, denoted 𝐸 $, as a subset of Δ$×Δ$
• a shape expression 𝜙, denoted 𝜙 $, as a subset of Δ$

𝝓 𝝓 𝑰

⊤ Δ"

ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(𝑐) 𝑐 "

ℎ𝑎𝑠𝑆ℎ𝑎𝑝𝑒(𝑠) 𝑠 "

𝑒𝑞(𝐸, 𝑝) {𝑎 ∈ Δ" ∣ 𝐸 " 𝑎 = 𝑝 " 𝑎 }
𝑑𝑖𝑠𝑗(𝐸, 𝑝) {𝑎 ∈ Δ" ∣ 𝐸 " 𝑎 ∩ 𝑝 " 𝑎 = ∅}
𝑐𝑙𝑜𝑠𝑒𝑑 𝑄 {𝑎 ∈ Δ" ∣ 𝑝 " 𝑎 = ∅ for every 𝑝 ∈ Σ ∖ 𝑄}
≥# 𝐸. 𝜙$ {𝑎 ∈ Δ" ∣ # 𝐸 " 𝑎 ∩ 𝜙$ " ≥ 𝑛}
𝜙$ ∧ 𝜙% 𝜙$ " ∩ 𝜙% "

What’s in an RDF Graph?

• Real SHACL is not about interpretations, but about graphs

• An RDF graph is a finite set of facts 𝑝(𝑎, 𝑏) representing the edges

• This gives us a specific type of interpretation where:
• The domain is the universe of all nodes: Δ$ = 𝑁
• Constants, i.e., nodes, are interpreted as themselves : 𝑐 $ = {𝑐}
• The interpretation of properties is given by the graph: 𝑝 $ = 𝑝 %

10

Example shapes
• “Through a path of friend edges, the node can reach

node d”
• ∃friend∗. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(𝑑)
• b, c, and d satisfy this shape in 𝐺

• “Nodes where friendship is mutual”
• 𝑒𝑞 friend, friend"

• c and d satisfy this shape in 𝐺

• “Nodes who have at least one colleague who is also
a friend”
• ¬𝑑𝑖𝑠𝑗(friend, colleague)
• b and c satisfy this shape in 𝐺

a

b

c d

Friend
Colleague

11

Shape schemas
• The main task is to check whether a graph conforms to some

constraints, not single nodes.

• Shape definition: 𝑠 ← 𝜙

• Target statement: 𝜙& ⊆ 𝜙'

• Example schema (Def, 𝑇):

• Def: FriendOfD ← ∃friend∗. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(𝑑)

• 𝑇: ∃friend. ⊤ ⊆ ℎ𝑎𝑠𝑆ℎ𝑎𝑝𝑒(FriendOfD)

12

a

b

c d

Friend
Colleague

Correspondence with the Recommendation

• How does this logic exactly compare to SHACL?

• We want to study SHACL, and this logic:

13

Every formal SHACL schema can be written as a real SHACL
shapes graph and vice versa

Theorem

Recursion in SHACL
• Recursion: defining a shape in terms of itself
• Some shapes are easily expressed with recursion

14

GoodFriendOfD ← ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 d
GoodFriendOfD ← ∃friend. ℎ𝑎𝑠𝑆ℎ𝑎𝑝𝑒 GoodFriendOfD ∧ ∃type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(Good)

“You are a GoodFriendOfD if there is a friend-path of Good nodes to d”

:GoodFriendOfD a sh:NodeShape ;
 sh:class :Good ;
 sh:or (
 [sh:hasvalue :d]
 [sh:path :friend ;
 sh:qualifiedValueShape :GoodFriendOfD ;
 sh:qualifiedMinCount 1]) .

Applying Approximation Fixpoint Theory
• Algebraic Framework to study fixpoints, defines:

• Supported semantics
• Stable semantics
• Well-founded semantics
• ...

• We only need to:
• Agree on an order of interpretations: the standard truth order
• Agree on how to evaluate shapes in the three-valued logical setting: Kleene

• We get:
• Well defined semantics for recursive SHACL
• Theorethical body of results coming from AFT, now applicable to SHACL 15

𝒑 𝒒 𝒑 ∧ 𝒒 𝒑 ∨ 𝒒
True unknown unknown true
False unknown false unknown

𝐼$ ≤ 𝐼% iff for every 𝑠 ∈ 𝑆: 𝑠 "! ⊆ 𝑠 ""

Existing Semantics

[Corman 2018] defined supported model semantics (CRS-supported)

• Already defined the three-valued semantic operator ΦJKL

[Andreşel 2020] defined stable model semantics (ACORSS-stable)
• Defined in terms of ‘level-mappings’

CRS-supported models coincide with the AFT-supported modelsTheorem

16

Every AFT-stable model is a ACORSS-stable model. If Def is in
shape normal form, the converse also holds.

Theorem

Expressiveness
“What can we express with SHACL?”

Bart Bogaerts, Maxime Jakubowski, Jan Van den Bussche:

Expressiveness of SHACL Features and Extensions for Full Equality
and Disjointness Tests. Log. Methods Comput. Sci. 20(1) (2024)

Relative Expressiveness
• What features of SHACL are essential ?

• We already have the classical logical equivalences for free:
• ∀friend. ℎ𝑎𝑠𝑆ℎ𝑎𝑝𝑒 GoodPerson ≡ ¬∃friend. ¬ℎ𝑎𝑠𝑆ℎ𝑎𝑝𝑒(GoodPerson)

• Three uncommon features of SHACL:
• Equality: 𝑒𝑞(𝐸, 𝑝)
• Disjointness: 𝑑𝑖𝑠𝑗(𝐸, 𝑝)
• Closed: 𝑐𝑙𝑜𝑠𝑒𝑑(𝑄)

• Can we express these features with other constructs?

18

SHACL Features

• We call this the language 𝐿, with none of the interesting features
• 𝐹 ⊆ {𝑒𝑞, 𝑑𝑖𝑠𝑗, 𝑐𝑙𝑜𝑠𝑒𝑑}
• 𝐿(𝑒𝑞, 𝑑𝑖𝑠𝑗, 𝑐𝑙𝑜𝑠𝑒𝑑) is the logical core of SHACL
• With 𝐿(𝐹)we can write generalized shape schemas
• Set of inclusion statements: 𝜙& ⊆ 𝜙' with 𝜙& and 𝜙' in 𝐿(𝐹)

19

𝜙 ≔ ⊤ ∣ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 𝑐 ∣ ≥#𝐸. 𝜙 ∣ 𝜙 ∧ 𝜙 ∣ ¬𝜙

𝐸 ≔ 𝑖𝑑 ∣ 𝑝 ∣ 𝐸& ∣ 𝐸 ∪ 𝐸 ∣ 𝐸/𝐸 ∣ 𝐸∗

with	𝑐 ∈ 𝑁,	𝑝 ∈ 𝑃,	𝑠 ∈ 𝑆 and	𝑄 ⊆ 𝑃

Simple Shape Expressions

Main Result: all are primitive

20

For each feature 𝑋 ∈ { 𝑒𝑞, 𝑑𝑖𝑠𝑗, 𝑐𝑙𝑜𝑠𝑒𝑑}we define a class of graphs
𝑄, such that:

• 𝑄, is definable by a simple inclusion using only feature 𝑋

• 𝑄, is not definable without 𝑋

Theorem

Proving Primitivity of Equality

21

𝑄-. is the class of symmetric graphs:

∃𝑟. ⊤ ⊆ 𝑒𝑞(𝑟, 𝑟")

For any shape 𝜙 not using equality: 𝜙 % = 𝜙 %!

Equality

𝐺 𝐺′

A complete directed graph
with one edge removed

A complete directed graph

Proving Primitivity of Disjointness

22

𝑄/0'1 is the class of graphs where all nodes have at least one
symmetric edge:

∃𝑟. ⊤ ⊆ ¬𝑑𝑖𝑠𝑗(𝑟, 𝑟")

For any shape 𝜙 not using equality: 𝜙 % = 𝜙 %!

Disjointness

𝐺 𝐺′

An alternating cycle of cliques A cycle of cliques

Extending the Primitivity Result

• Equality and disjointness seem artificially restricted!
• Full-Equality: 𝑒𝑞(𝐸[, 𝐸\)
• Full-Disjointness: 𝑑𝑖𝑠𝑗(𝐸[, 𝐸\)

23

For both features 𝑋 ∈ { full−𝑒𝑞, full−𝑑𝑖𝑠𝑗 }we define a class of
graphs 𝑄, such that:

• 𝑄, is definable by a simple inclusion using only feature 𝑋

• 𝑄, is not definable without 𝑋

Theorem

Provenance:
“What subset of the graph is really relevant?”

Thomas Delva, Anastasia Dimou, Maxime Jakubowski, Jan Van den Bussche:

Data Provenance for SHACL. EDBT 2023: 285-297

Provenance & Neighborhoods
Goal:

• Provide provenance of a shape schema as a subgraph

• This subgraph only contains triples that are “relevant”

We define the neighborhood: 𝐵(𝐺, 𝑣, 𝜙)
• 𝐺 a graph
• 𝑣 a node
• 𝜙 a shape

What part of 𝐺 is relevant to decide that 𝑣 satisfies 𝜙 in 𝐺?

25

Sufficiency and design principles

“Strong” sufficiency: it holds for all 𝐺′where 𝐵 𝐺, 𝑣, 𝜙 ⊆ 𝐺2 ⊆ 𝐺.
• Technical necessity
• Allows for leniency in implementations of neighborhoods

When defining neighborhoods we want to be both deterministic and minimal

If a node 𝑣 satisfies a shape 𝜙 in a graph 𝐺, then:
𝑣 also satisfies 𝜙 in 𝐺′ for any subgraph 𝐺′with 𝐵 𝐺, 𝑣, 𝜙 ⊆ 𝐺2 ⊆ 𝐺.

Sufficiency
Property

26

Neighborhood definition

Shapes in negation normal form (and no path expressions):
𝜙 ≔ ⊤ ∣ ⊥ ∣ ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 𝑐 ∣ ¬ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 𝑐 ∣ 𝑒𝑞 𝑝, 𝑞 ∣ ¬𝑒𝑞 𝑝, 𝑞

∣ 𝑑𝑖𝑠𝑗 𝑝, 𝑞 ∣ ¬𝑑𝑖𝑠𝑗 𝑝, 𝑞 ∣ 𝑐𝑙𝑜𝑠𝑒𝑑 𝑄 ∣ ¬𝑐𝑙𝑜𝑠𝑒𝑑 𝑄

∣ 𝜙 ∧ 𝜙 ∣ 𝜙 ∨ 𝜙 ∣ ≥!𝑝. 𝜙 ∣ ≤! 𝑝. 𝜙

Neighborhood of a node 𝑣 according to a shape 𝜙 in graph 𝐺: 𝐵 𝐺, 𝑣, 𝜙

• When the node 𝑣 does not satisfy 𝜙 in 𝐺, the neighborhood is empty

• Shapes that do not use any properties, also have an empty neighborhood

27

Nonequality: ¬𝒆𝒒(𝒑, 𝒒)

𝑣

a

c

𝐵(𝐺, 𝑣, 𝜙)𝐺

b 𝑣

a

c

b

Options:
• Only edges to a	and/or c
• All edges

Reasons:
• Determinism
• Somehow minimal

28

“symetric difference”

Quantifiers: ≥𝟏 𝒑.𝝍

𝑣

a

c

𝐺

b 𝑣

a

c

b

𝐵(𝐺, 𝑣, 𝜙)

Options:
• Only edges to a	and/or b
• All edges

Reasons:
• Determinism
• Somehow minimal

29

𝝍

𝝍

¬𝜓

Quantifiers: ≤𝟏 𝒑.𝝍

𝑣

a

c

b 𝑣

a

c

b

𝐵(𝐺, 𝑣, 𝜙)𝐺

Options:
• No edges
• Edge to 𝑎
• All edges

Reasons:
• Determinism
• Somehow minimal
• Adding edges to the neighborhood may

not break sufficiency 30

𝝍

¬𝜓

¬𝜓

Example

p1 Paper
Bob

Anne

Student

Professor
type author

type

“The node has an author and at most one author is not a student.”

𝐵(𝐺, 𝑝1, 𝜙)

𝜙 ≡ ≥3 author. ⊤ ∧ ≤3 author. ¬≥3 type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(Student)

31

Example

𝜙 ≡ ≥3 author. ⊤ ∧ ≤3 author. ≤4 type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(Student)

“The node has an author and at most one author is not a student.”

𝐵(𝐺, 𝑝1, 𝜙)

p1 Paper
Bob

Anne

Student

Professor
type author

type

32

Example

“The node has an author and at most one author is not a student.”

𝐵(𝐺, 𝑝1, 𝜙)

p1 Paper
Bob

Anne

Student

Professor
type author

type

𝜙 ≡ ≥3 author. ⊤ ∧ ≤3 author. ≤4 type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(Student)

33

Example

“The node has an author and at most one author is not a student.”

𝐵(𝐺, 𝑝1, 𝜙)

𝜙 ≡ ≥3 author. ⊤ ∧ ≤3 author. ≤4 type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(Student)

34

𝐵(𝐺,Anne, ¬≤(type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 Student)
𝐵(𝐺,Bob, ¬≤(type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 Student)

p1 Paper
Bob

Anne

Student

Professor
type author

type

Example

“The node has an author and at most one author is not a student.”

𝐵(𝐺, 𝑝1, 𝜙)

𝜙 ≡ ≥3 author. ⊤ ∧ ≤3 author. ≤4 type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(Student)

35

𝐵(𝐺,Anne, ∃type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 Student)
𝐵(𝐺,Bob, ∃type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 Student)

p1 Paper
Bob

Anne

Student

Professor
type author

type

Example

“The node has an author and at most one author is not a student.”

𝐵(𝐺, 𝑝1, 𝜙)

𝜙 ≡ ≥3 author. ⊤ ∧ ≤3 author. ≤4 type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒(Student)

36

𝐵(𝐺,Anne, ∃type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 Student)
𝐵(𝐺,Bob, ∃type. ℎ𝑎𝑠𝑉𝑎𝑙𝑢𝑒 Student)

p1 Paper
Bob

Anne

Student

Professor
type author

type

Applications and
Implementations

https://github.com/MaximeJakubowski/sls_project

https://github.com/Shape-Fragments

https://github.com/MaximeJakubowski/sls_project
https://github.com/Shape-Fragments

Shape Fragments
… as an application of neighborhoods.

We define Frag 𝑮, 𝑺 as the union of all neighborhoods of nodes satisfying the
shapes from 𝑆 in 𝐺.

Let 𝐻 be a shape schema, we define:

Frag 𝑮,𝑯 ≔ Frag(𝐺, 𝑆)

where 𝑆 = {𝜙 ∧ 𝜏 ∣ 𝜏 is the target of 𝜙 in𝐻}

If a graph 𝐺 satisfies a schema 𝐻, then Frag(𝐺,𝐻) also
conforms to 𝐻.

Conformance
Property

38

Tools

• PySHACL implementation

• Translation to SPARQL

• Conformance queries

• Neighborhood queries

39

PySHACL Overhead: checking vs retrieval

0

5

10

15

20

25

30

1.5M 2.5M 3.5M 4.5M

Ov
er

he
ad

 p
er

ce
nt

ag
e

• 56 shapes
• 1.5M → 4.5M triples

• Average: 10%
• Average ≥ 1s: 15,6%

40

Retrieving neighborhoods in SPARQL

0

5

10

15

20

25

30

35

40

45

50

1.5M 2.5M 3.5M 4.5M

Ti
m

e
in

 se
co

nd
s

• 13 shapes
• 1.5M → 4.5M triples

41

Conclusions

Recommendations and future work

SHACL, SPARQL, and OWL

• Different “views” on what an RDF (data) graph is:
• OWL sees it as an ABox: a logical theory
• SPARQL and SHACL see it as a specific interpretation

• SHACL can be formalized in a purely logical fashion, like OWL
• Both can be viewed as a Description Logic, but with different tasks
• OWL is mostly concerned with entailment and consistency
• SHACL is mostly concerned with model checking

43

Suggestions for the Recommendation (1)

• The W3C leaves recursive shapes undefined
• Semantics from the literature (mostly) agree on:
• Minimal model semantics for purely positive recursion
• Minimal model semantics for shape definitions using negation in a

stratified manner

44

Adopt “stratified negation” in the recommendationSuggestion

Suggestions for the Recommendation (2)

• There is interest in extending SHACL with new constraint
components (see DASH)

• The suggested extensions seem to add some expressive power

45

Allow for full property paths in the Property Pair Constraint
Components, e.g., full equality and disjointness

Suggestion

Applications for Provenance

• The neighborhood can be used to describe a node in a graph
• You get the relevant information
• Suffiency guarantees that the description fits the shape, even when

adding information
• No need to write additional queries in SPARQL

• Neighborhoods can give an indication of the coverage of the
schema

46

Specific Open Questions

• Expressiveness under the different recursive semantics: are the
features still primitive?

• Expressiveness of “zero-or-one” paths as a feature: 𝐸?≡ 𝐸 ∪ 𝑖𝑑

• Can we express the “diamond shape”?

• Provenance: formalizing or correcting our notion of minimality and
determinism

47

a
b

c
d

Research Directions

• The relation between SHACL, ShEx, and PG-Schema
• Extending SHACL to capture the “full” power of RDF as a triple

relation
• Exploring alternative SHACL semantics by translation to other

languages:
• Retrieval with SQL
• Reasoning with IDP

• Usage of SHACL in the wild

48

Thank you

