Shapes Constraint Language: Formalization, Expressiveness, and Provenance

Maxime Jakubowski

Doctoral Defense

May 31st 2024

Knowledge Graphs

- Organising information in graphs
- Resource Description Framework (RDF) RDF graphs

OWL Knowledge

"every author is a human"

- What to do with this information?
 - Querying (SPARQL): "who is the author of **The Hobbit**?"
 - Reasoning (OWL):
- "is **tolkien** human?"

Shapes Constraint Language: SHACL

- RDF graphs can be very large
- We want to ensure good *quality* of these graphs
 - Knowing what to expect
 - Detecting errors in our data
 - Ensuring consistency
- For example: "every book must have an author"

Shapes Constraint Language: SHACL

- Shapes are constraints on a graph, and consists of two parts:
 - Constraint on a node: the shape expression
 - Specification which nodes must satisfy the constraint: *target declaration*
- In our example:
 - "has an author" is a shape expression
 - "every **book**" is a target declaration

Formalization "What is a good abstraction for SHACL?"

Bart Bogaerts, Maxime Jakubowski, Jan Van den Bussche: SHACL: A Description Logic in Disguise. LPNMR 2022: 75-88

Bart Bogaerts, Maxime Jakubowski: Fixpoint Semantics for Recursive SHACL. ICLP Tech. Comm. 2021: 41-47

Formal semantics for SHACL

- SHACL is defined by the World Wide Web Concortium in a document called the "recommendation"
 - This document is mainly written for software engineers that implement SHACL software
 - For academic understanding of SHACL, more abstraction is needed
- Academics soon formalized SHACL:
 - Julien Corman, Juan L. Reutter, Ognjen Savkovic: Semantics and Validation of Recursive SHACL. ISWC (1) 2018: 318-336
 - Medina Andresel, Julien Corman, Magdalena Ortiz, Juan L. Reutter, Ognjen Savkovic, Mantas Simkus: Stable Model Semantics for Recursive SHACL. WWW 2020: 1570-1580

SHACL – The Logical Perspective

Let *N*, *P* and *S* be disjoint universes of node names, property names and shape names.

Shape Expressions

 $\phi \coloneqq \top \mid hasValue(c) \mid hasShape(s) \mid eq(E,p) \mid disj(E,p)$

 $| closed(Q) | \geq_n E.\phi | \phi \land \phi | \neg \phi$

```
E := id \mid p \mid p^- \mid E \cup E \mid E/E \mid E^*
```

```
with c \in N, p \in P, s \in S and Q \subseteq P
```

E are regular path queries with inverse

Semantics of Shape Expressions

- Given through an interpretation *I*:
 - with a domain: Δ^I
 - interprets node names $c \in N$:
 - Interprets shape names $s \in S$:
 - Interprets property names $p \in P$:
- We define the *evaluation* of:
 - a path expression E, denoted $\llbracket E \rrbracket^I$, as a subset of $\Delta^I \times \Delta^I$

 $\llbracket c \rrbracket^I$

 $[s]^I$

 $\llbracket p \rrbracket^I$

- a shape expression ϕ , denoted $[\![\phi]\!]^I$, as a subset of Δ^I

Semantics of Shape Expressions

- We define the *evaluation* of:
 - a path expression E, denoted $\llbracket E \rrbracket^I$, as a subset of $\Delta^I \times \Delta^I$
 - a shape expression ϕ , denoted $[\![\phi]\!]^I$, as a subset of Δ^I

ϕ	$\llbracket \boldsymbol{\phi} rbracket^I$
т	Δ^{I}
hasValue(c)	$\llbracket c \rrbracket^I$
hasShape(s)	$\llbracket s \rrbracket^I$
eq(E,p)	$\{a \in \Delta^{I} \mid \llbracket E \rrbracket^{I}(a) = \llbracket p \rrbracket^{I}(a)\}$
disj(E,p)	$\{a \in \Delta^{I} \mid \llbracket E \rrbracket^{I}(a) \cap \llbracket p \rrbracket^{I}(a) = \emptyset\}$
closed(Q)	$\{a \in \Delta^{I} \mid \llbracket p \rrbracket^{I}(a) = \emptyset \text{ for every } p \in \Sigma \setminus Q\}$
$\geq_n E.\phi_1$	$\{a \in \Delta^I \mid \#(\llbracket E \rrbracket^I(a) \cap \llbracket \phi_1 \rrbracket^I) \ge n\}$
$\phi_1 \wedge \phi_2$	$\llbracket \phi_1 \rrbracket^I \cap \llbracket \phi_2 \rrbracket^I$

What's in an RDF Graph?

- *Real SHACL* is not about interpretations, but about *graphs*
- An RDF graph is a finite set of facts p(a, b) representing the edges
- This gives us a specific type of interpretation where:
 - The domain is the universe of all nodes:
 - Constants, i.e., nodes, are interpreted as themselves :
 - The interpretation of properties is given by the graph:

 $\Delta^{I} = N$ $\llbracket c \rrbracket^{I} = \{c\}$ $\llbracket p \rrbracket^{I} = \llbracket p \rrbracket^{G}$

Example shapes

- "Through a path of friend edges, the node can reach node d"
 - ∃friend^{*}.hasValue(d)
 - b, c, and d satisfy this shape in G
- "Nodes where *friend*ship is mutual"
 - eq(friend, friend⁻)
 - c and d satisfy this shape in G
- "Nodes who have at least one colleague who is also a friend"
 - ¬disj(friend, colleague)
 - b and c satisfy this shape in G

Friend

Shape schemas

- The main task is to check whether a **graph** conforms to some constraints, not single nodes.
 - Shape definition: $s \leftarrow \phi$
 - Target statement: $\phi_t \subseteq \phi_s$
- Example schema (Def, T):
 - Def: **FriendOfD** $\leftarrow \exists friend^*.hasValue(d)$
 - *T*: $\exists friend. \top \subseteq hasShape(FriendOfD)$

Correspondence with the Recommendation

- How does this logic exactly compare to SHACL?
- We want to study SHACL, and this logic:

Theorem	Every formal SHACL schema can be written as a real SHACL
	shapes graph and vice versa

Recursion in SHACL

- Recursion: defining a shape in terms of itself
- Some shapes are easily expressed with recursion

"You are a **GoodFriendOfD** if there is a *friend*-path of *Good* nodes to *d*"

```
GoodFriendOfD \leftarrow hasValue(d)
GoodFriendOfD \leftarrow \exists friend. hasShape(GoodFriendOfD) \land \exists type. hasValue(Good)
```

```
:GoodFriendOfD a sh:NodeShape ;
  sh:class :Good ;
  sh:or (
   [ sh:hasvalue :d ]
   [ sh:path :friend ;
    sh:qualifiedValueShape :GoodFriendOfD ;
   sh:qualifiedMinCount 1 ] ) .
```

Applying Approximation Fixpoint Theory

- Algebraic Framework to study fixpoints, defines:
 - Supported semantics
 - Stable semantics
 - Well-founded semantics
 - ...
- We only need to:
 - Agree on an order of interpretations: the standard truth order
 - Agree on how to evaluate shapes in the three-valued logical setting: Kleene
- We get:
 - Well defined semantics for recursive SHACL
 - Theorethical body of results coming from AFT, now applicable to SHACL

Existing Semantics

[Corman 2018] defined supported model semantics (CRS-supported)

• Already defined the three-valued semantic operator Φ_{Def}

Theorem CRS-supported models coincide with the AFT-supported models

[Andreşel 2020] defined stable model semantics (ACORSS-stable)

• Defined in terms of 'level-mappings'

Theorem Every AFT-stable model is a ACORSS-stable model. If Def is in *shape normal form*, the converse also holds.

Expressiveness "What can we express with SHACL?"

Bart Bogaerts, Maxime Jakubowski, Jan Van den Bussche:

Expressiveness of SHACL Features and Extensions for Full Equality and Disjointness Tests. Log. Methods Comput. Sci. 20(1) (2024)

Relative Expressiveness

- What features of SHACL are essential?
- We already have the classical logical equivalences for free:
 - \forall friend. has Shape(GoodPerson) $\equiv \neg \exists$ friend. \neg has Shape(GoodPerson)
- Three uncommon features of SHACL:
 - Equality: eq(E,p)
 - Disjointness: disj(E,p)
 - Closed: closed(Q)
- Can we express these features with other constructs?

SHACL Features

Simple Shape Expressions

 $\phi \coloneqq \top \mid hasValue(c) \mid \geq_n E.\phi \mid \phi \land \phi \mid \neg \phi$

 $E := id \mid p \mid E^- \mid E \cup E \mid E/E \mid E^*$

with $c \in N$, $p \in P$, $s \in S$ and $Q \subseteq P$

- We call this the language L, with none of the interesting features
- $F \subseteq \{eq, disj, closed\}$
- *L(eq, disj, closed)* is the logical core of SHACL
- With L(F) we can write generalized shape schemas
- Set of inclusion statements: $\phi_t \subseteq \phi_s$ with ϕ_t and ϕ_s in L(F)

Main Result: all are primitive

Theorem

For each feature $X \in \{eq, disj, closed\}$ we define a class of graphs Q_X such that:

- Q_X is definable by a simple inclusion using only feature X
- Q_X is **not** definable without X

Proving Primitivity of Equality

Equality Q_{eq} is the class of symmetric graphs: $\exists r. \top \subseteq eq(r, r^{-})$ For any shape ϕ not using equality: $\llbracket \phi \rrbracket^G = \llbracket \phi \rrbracket^{G'}$

A complete directed graph with one edge removed

A complete directed graph

Proving Primitivity of Disjointness

 Q_{disj} is the class of graphs where all nodes have at least one symmetric edge:

$$\exists r. \top \subseteq \neg disj(r, r^{-})$$

For any shape ϕ not using equality: $\llbracket \phi \rrbracket^G = \llbracket \phi \rrbracket^{G'}$

Disjointness

An alternating cycle of cliques

A cycle of cliques

Extending the Primitivity Result

- Equality and disjointness seem artificially restricted!
- Full-Equality: $eq(E_1, E_2)$
- Full-Disjointness: $disj(E_1, E_2)$

Theorem	For both features $X \in \{ full - eq, full - disj \}$ we define a class of graphs Q_X such that:
	• Q_X is definable by a simple inclusion using only feature X
	• Q_X is not definable without X

Provenance: "What subset of the graph is really relevant?"

Thomas Delva, Anastasia Dimou, Maxime Jakubowski, Jan Van den Bussche: Data Provenance for SHACL. EDBT 2023: 285-297

Provenance & Neighborhoods

Goal:

- Provide provenance of a shape schema as a subgraph
- This **subgraph** only contains triples that are "relevant"

We define the **neighborhood**:

 $B(G,v,\phi)$

- *G* a graph
- v a node
- ϕ a shape

What part of G is relevant to decide that v satisfies ϕ in G?

Sufficiency and design principles

Sufficiency
PropertyIf a node v satisfies a shape ϕ in a graph G, then:
v also satisfies ϕ in G' for any subgraph G' with $B(G, v, \phi) \subseteq G' \subseteq G$.

"Strong" sufficiency: it holds for all G' where $B(G, v, \phi) \subseteq G' \subseteq G$.

- Technical necessity
- Allows for leniency in implementations of neighborhoods

When defining neighborhoods we want to be both **deterministic** and **minimal**

Neighborhood definition

Shapes in **negation normal form** (and no path expressions): $\phi := \top |\perp| hasValue(c) |\neg hasValue(c) | eq(p,q) | \neg eq(p,q)$ $| disj(p,q) | \neg disj(p,q) | closed(Q) | \neg closed(Q)$ $| \phi \land \phi | \phi \lor \phi | \ge_n p. \phi | \le_n p. \phi$

Neighborhood of a node v according to a shape ϕ in graph G: $B(G, v, \phi)$

- When the node v does **not** satisfy ϕ in G, the neighborhood is empty
- Shapes that do not use any properties, also have an empty neighborhood

Nonequality: $\neg eq(p, q)$

Options:

G

- Only edges to a and/or c
- All edges

 $B(G,v,\phi)$

"symetric difference"

Reasons:

- Determinism
- Somehow minimal

Quantifiers: $\geq_1 p.\psi$

Options:

G

- Only edges to a and/or b
- All edges

Reasons:

- Determinism
- Somehow minimal

Quantifiers: $\leq_1 p.\psi$

Options:

G

- No edges
- Edge to a
- All edges

$B(G, v, \phi)$

Reasons:

- Determinism
- Somehow minimal
- Adding edges to the neighborhood may not break sufficiency

 $\phi \equiv \geq_1 author. \top \land \leq_1 author. \neg \geq_1 type. hasValue(Student)$

$$B(G, p1, \phi)$$

 $\phi \equiv \geq_1 author. \top \land \leq_1 author. \leq_0 type. hasValue(Student)$

$$B(G, p1, \phi)$$

 $\phi \equiv \geq_1 author. \top \land \leq_1 author. \leq_0 type. hasValue(Student)$

$$B(G, p1, \phi)$$

$$B(G, p1, \phi)$$

$$B(G, p1, \phi)$$

$$B(G, p1, \phi)$$

Applications and Implementations

https://github.com/MaximeJakubowski/sls_project

https://github.com/Shape-Fragments

Shape Fragments

... as an application of neighborhoods.

We define Frag(G, S) as the union of all neighborhoods of nodes satisfying the shapes from S in G.

Let *H* be a shape schema, we define:

 $Frag(G, H) \coloneqq Frag(G, S)$

where $S = \{\phi \land \tau \mid \tau \text{ is the target of } \phi \text{ in } H\}$

Conformance	If a graph G satisfies a schema H, then $Frag(G, H)$ also
Property	conforms to <i>H</i> .

Tools

- PySHACL implementation
- Translation to SPARQL
 - Conformance queries
 - Neighborhood queries

PySHACL Overhead: checking vs retrieval

- 56 shapes
- 1.5M → 4.5M triples
- Average: 10%
- Average ≥ 1 s: 15,6%

Retrieving neighborhoods in SPARQL

- 13 shapes
- $1.5M \rightarrow 4.5M$ triples

Conclusions

Recommendations and future work

SHACL, SPARQL, and OWL

- Different "views" on what an RDF (data) graph is:
 - OWL sees it as an ABox: a logical theory
 - SPARQL and SHACL see it as a specific interpretation
- SHACL can be formalized in a purely logical fashion, like OWL
 - Both can be viewed as a Description Logic, but with different tasks
 - OWL is mostly concerned with entailment and consistency
 - SHACL is mostly concerned with model checking

Suggestions for the Recommendation (1)

- The W3C leaves recursive shapes undefined
- Semantics from the literature (mostly) agree on:
 - Minimal model semantics for purely *positive* recursion
 - Minimal model semantics for shape definitions using negation in a *stratified* manner

Suggestion Adopt "stratified negation" in the recommendation

Suggestions for the Recommendation (2)

- There is interest in extending SHACL with new constraint components (see DASH)
- The suggested extensions seem to add some expressive power

SuggestionAllow for full property paths in the Property Pair ConstraintComponents, e.g., full equality and disjointness

Applications for Provenance

- The neighborhood can be used to *describe* a node in a graph
 - You get the *relevant* information
 - Suffiency guarantees that the description fits the shape, even when adding information
 - No need to write additional queries in SPARQL
- Neighborhoods can give an indication of the coverage of the schema

Specific Open Questions

- Expressiveness under the different recursive semantics: are the features still primitive?
- Expressiveness of "zero-or-one" paths as a feature: $E? \equiv E \cup id$
- Can we express the "diamond shape"? -

• Provenance: formalizing or correcting our notion of minimality and determinism

Research Directions

- The relation between SHACL, ShEx, and PG-Schema
- Extending SHACL to capture the "full" power of RDF as a triple relation
- Exploring alternative SHACL semantics by translation to other languages:
 - Retrieval with SQL
 - Reasoning with IDP
- Usage of SHACL in the wild

Thank you