Postulates for Provenance: instance-based provenance for first-order logic

Bart Bogaerts, Maxime Jakubowski & Jan Van den Bussche

June 12th, 2024

Properties & Postulates

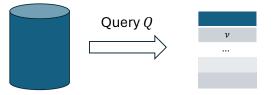
Results 000

Instance-based Provenance

Given a query result setting:

Instance A

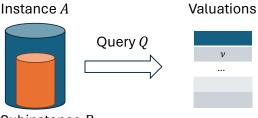
Valuations



What part of instance A makes ν a valuation of Q?

Instance-based Provenance

The provenance result setting:



Subinstance B

We would like to identify an insteresting subinstance $B \subseteq A$.

Provenance Results

A query result **r** is a tuple $(\mathbf{d}, A, \nu, \varphi)$ with:

- d the domain;
- A a *three-valued* instance (a set of positive and negative facts);
- ν a valuation; and
- φ a first-order logic query

such that $\nu(\varphi)$ is true in A under certain answer semantics.

We say \mathbf{r} is *total* if A is two-valued.

Provenance Results

A query result **r** is a tuple $(\mathbf{d}, A, \nu, \varphi)$ with:

- d the domain;
- A a *three-valued* instance (a set of positive and negative facts);
- ν a valuation; and
- φ a first-order logic query

such that $\nu(\varphi)$ is *true* in A under *certain answer semantics*. We say **r** is *total* if A is two-valued.

A provenance result \mathbf{p} is a tuple (\mathbf{r}, B) with:

- $\mathbf{r} = (\mathbf{d}, A, \nu, \varphi)$ a *total* query result; and
- *B* a (three-valued) subinstance of *A*.

such that $(\mathbf{d}, B, \nu, \varphi)$ is a query result.

We say B is *sufficient* for **r**.

Example of a Provenance Result

To explain that a tuple t belongs to the difference R - S of two relations, the positive and negative information is equally important.

Example of a Provenance Result

To explain that a tuple t belongs to the difference R - S of two relations, the positive and negative information is equally important.

Consider the total query result $\mathbf{r} = (\mathbf{d}, A, \nu, \varphi)$ with:

•
$$\mathbf{d} = \{a, b\};$$

•
$$A = \{R(a), R(b), S(a), \neg S(b)\};$$

•
$$\varphi$$
 is $R(x) \land \neg S(x)$;

• $\nu = \{x \mapsto b\}$

Example of a Provenance Result

To explain that a tuple t belongs to the difference R - S of two relations, the positive and negative information is equally important.

Consider the total query result $\mathbf{r} = (\mathbf{d}, A, \nu, \varphi)$ with:

• $\mathbf{d} = \{a, b\};$

•
$$A = \{R(a), R(b), S(a), \neg S(b)\};$$

- φ is $R(x) \wedge \neg S(x)$;
- $\nu = \{x \mapsto b\}$

A sensible provenance result would be $(\mathbf{r}, \{R(b), \neg S(b)\})$.

Provenance Relations

A provenance relation is an infinite set Π of provenance results that is *total* and *generic*.

Examples:

- Π^{tok}: for every query result, *B* is the set of tokens from the provenance polynomial.
- Π^{cf} : for every query result, *B* is the set of causal facts.
- Π^{tokcf}: for every query result, B is the intersection of tokens from the polynomial and the causal facts.

Provenance Relations

A provenance relation is an infinite set Π of provenance results that is *total* and *generic*.

Examples:

- Π^{tok}: for every query result, *B* is the set of tokens from the provenance polynomial.
- Π^{cf} : for every query result, *B* is the set of causal facts.
- Π^{tokcf}: for every query result, B is the intersection of tokens from the polynomial and the causal facts.

These were examples of **Deterministic** provenance relations. Other example:

 Π^{mon}: for every query result B is the set of tokens from one monomial of the provenance polynomial.

Provenance Relations

A provenance relation is an infinite set Π of provenance results that is *total* and *generic*.

Examples:

- Π^{tok}: for every query result, *B* is the set of tokens from the provenance polynomial.
- Π^{cf} : for every query result, *B* is the set of causal facts.
- Π^{tokcf}: for every query result, B is the intersection of tokens from the polynomial and the causal facts.

These were examples of **Deterministic** provenance relations. Other example:

- Π^{mon}: for every query result B is the set of tokens from one monomial of the provenance polynomial.
- \Rightarrow Our goal is **not** to propose an ultimate provenance semantics for FO, but to investigate different desiderata.

Provenance Polynomials

We adapt the notion of a provenance polynomial for FO from *Grädel and Tannen (2017)* to the three-valued setting by interpreting unknown facts as 0.

For example: let $\mathbf{d} = \{a, b\}$,

•
$$A = \{P(a), P(b), \neg Q(a)\}, \text{ and}$$

•
$$\varphi$$
 is $\exists x (P(x) \land \neg Q(x))$

Then $pol(\mathbf{d}, A, \varepsilon, \varphi) = P(a)\overline{Q(a)}$

We also have:

Lemma

Let **r** be a total query result. The set of all tokens of the polynomial for **r** (denoted tokens(**r**)) is sufficient for **r**. In other words, (**r**, tokens(**r**)) is a provenance result.

Causality for Query Results

We adapt the notion of an actual cause from Meliou et al. (2010):

Definition

A supercause of a query result **r** with instance A is a subinstance $C \subseteq A$ such that "flipping" the facts of C in A makes $\nu(\varphi)$ unknown or false. An *actual cause* (or simply *cause*) is a minimal supercause.

We also have:

Lemma

Let **r** be a total query result. The set of all causal facts for **r** (denoted $(cf(\mathbf{r}))$ is sufficient for **r**. In other words, $(\mathbf{r}, cf(\mathbf{r}))$ is a provenance result.

Polynomials and Causality

The "Hitting-set lemma":

Lemma

Let **r** be a total query result with instance A and let $B \subseteq A$. Then B is sufficient for **r** if and only if B intersects with every cause of **r**.

We therefore have:

Theorem

For any total query result \mathbf{r} , the intersection $cf(\mathbf{r}) \cap tokens(\mathbf{r})$ is sufficient for \mathbf{r} .

Properties of Provenance Results

Let $\mathbf{p} = (\mathbf{r}, B)$ be a provenance result, with \mathbf{r} a total query result with instance A:

- **p** is **proof preserving** (pp) if the provenance polynomial is the same in instances *A* and *B*.
- **p** is **proof containing** (k) if subinstance *B* contains at least the tokens of one monomial.
- **p** is **proof-relevant** (pr) if *B* consists only of tokens from the polynomial.
- **p** is **cause preserving** (cp) if the causes are the same in instances *A* and *B*.
- **p** is **cause containing** (cc) if *B* contains a cause from *A*.
- p is cause-relevant (cr) if B consists only of causal facts.

These are the *basic* properties. Let X be a set of basic properties:

• **p** is **minimal for** X (*min*(X)) if B is minimal such that **p** satisfies all basic properties in X.

Postulates for Provenance *Relations*

We can lift the properties for provenance results to *Postulates* by requiring that every element in the provenance relation satisfies it:

- Polynomial Preservation (PP): every $\mathbf{p} \in \Pi$ is proof preserving.
- **Proof Containing** (K): every $\mathbf{p} \in \Pi$ is proof containing.
- **Proof Relevance** (PR): every $\mathbf{p} \in \Pi$ is proof-relevant.
- Cause Preservation (CP): every $\mathbf{p} \in \Pi$ is cause preserving.
- Cause Containing (CC): every $\mathbf{p} \in \Pi$ is cause containing.
- Causal Relevance (CR): every $\mathbf{p} \in \Pi$ is cause-relevant.
- Minimal for X (MIN(X)): every $\mathbf{p} \in \Pi$ is min(X).

Finally, we also have:

• **Determinism** (D): for every query result **r**, there is exactly one provenance result (**r**, *B*) in Π.

 \Rightarrow We say a set of postulates X is *satisfiable* if there exists a provenance relation that satisfies all postulates from X.

Satisfiability

We exhaustively investigated which sets of postulates are satisfiable.

For example:

- Π^{tok} satisfies PP, K, PR and D
- Π^{cf} satisfies $\mathrm{CP}, \mathrm{CC}, \mathrm{CR}$ and D
- $\Pi^{\textit{tokcf}}_{\cap}$ satisfies PR,CR and D
- $\Pi^{\textit{mon}}$ satisfies $\mathrm{MiN}(k)$ and PR

Satisfiability: you can't have it all

Not every set of postulates is satisfiable!

Example (1)

The set $\{\mathrm{PR},\mathrm{CC}\}$ is not satisfiable because:

- there must exist a provenance result for the total query result: $\mathbf{r} = (\{P, Q\}, \varphi)$ where φ is $P \lor (\neg P \land Q)$
- since $pol(\mathbf{r}) = P$, we have $tokens(\mathbf{r}) = \{P\}$
- since $\varphi \equiv P \lor Q$, there is only one cause: $\{P, Q\}$
- however, we require a provenance result with subinstance B to: satisfy: {P, Q} ⊆ B ⊆ {P}.

Satisfiability: you can't have it all

Example (2)

The set $\{MIN(pp, cc), D\}$ is not satisfiable because:

- there must exist a provenance result for the total query result: $\mathbf{r} = (\{P, Q, R\}, \varphi)$ where φ is $(P \land Q \land \neg R) \lor R$
- we have $pol(\mathbf{r}) = R$
- we have two causes: $\{P, R\}$ and $\{Q, R\}$
- both causes are sufficient subinstances satisfying pp and cc

However, without Determinism it is clearly satisfiable!

Concluding Remarks

- We deal with negation by considering three-valued provenance subinstances.
- Our postulates focus on incorporating different postulates from the literature and result in interesting provenance relations:
 - some deterministic: $\Pi^{tok}, \Pi^{cf}, \Pi^{tokcf}_{\cap}$
 - some not: Π^{mon}, minimally sufficient subinstances, ...
- We developed a general framework to study different provenance postulates.